Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Legal Med ; 133(5): 1603-1610, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31203433

RESUMEN

PURPOSE: Current forensic analysis of blunt force trauma relies on the use of cadaveric or animal tissues, posing ethical and reproducibility concerns. Artificial substitutes may help overcome such issues. However, existing substitutes exhibit poor anatomic and mechanical biofidelity, especially in the choice of skull simulant material. Progress has been made in identifying materials that have similar mechanical properties to the human skull bone, with the potential to behave similarly in mechanical loading. AIMS: To compare the biomechanical properties of the human calvarial bone with an epoxy resin-based simulant material. Data collected was also used to analyse the effect of periosteal attachment on the mechanical properties of skull bone compared with that of the counterpart samples. METHODS: Fifty-six human skull bone specimens were prepared from two cadaveric heads. Half of these specimens were removed of periosteum and dura mater as the PR (periosteum removed) group, whereas periosteum was left attached in the PA (periosteum attached) group. Duplicates of the bone specimens were fabricated out of an epoxy resin and paired in corresponding PR and PA groups. The specimens were loaded under three-point bending tests until fracture with image-based deformation detection. RESULTS: Comparison of the epoxy resin and skull specimens yielded similarity for both the PR and PA groups, being closer to the PA group (bending modulus resin PR 2665 MPa vs. skull PR 1979 MPa, resin PA 3165 MPa vs. skull PA 3330 MPa; maximum force resin PR 574 N vs. skull PR 728 N, resin PA 580 N vs. skull PA 1034 N; strain at maximum force resin PR 2.7% vs. skull PR 5.1%, resin PA 2.3% vs. skull PA 3.5%, deflection at maximum force resin PR 0.5 mm vs. skull PR 0.8 mm, resin PA 0.5 mm vs. skull PA 1.0 mm). Bending strength was significantly lower in the resin groups (resin PR 43 MPa vs. skull PR 55 MPa, resin PA 44 MPa vs. skull PA 75 MPa). Moreover, the correlations of the mechanical data exhibited closer accordance of the PR group with the epoxy resin compared with the PA group with the epoxy resin. CONCLUSIONS: The load-deformation properties of the epoxy resin samples assessed in this study fell within a closer range to the skull specimens with PR  than with PA. Moreover, the values obtained for the resin fall within the reference range for skull tissues in the literature suggesting that the proposed epoxy resin may provide a usable artificial substitute for PA but does not totally represent the human skull in its complex anatomical structure.


Asunto(s)
Resinas Epoxi , Ensayo de Materiales , Modelos Anatómicos , Fracturas Craneales , Cráneo/anatomía & histología , Cráneo/lesiones , Estrés Mecánico , Anciano de 80 o más Años , Cadáver , Duramadre , Humanos , Persona de Mediana Edad , Periostio , Resistencia a la Tracción
2.
J Healthc Eng ; 2019: 6515797, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249655

RESUMEN

With increasingly detailed imaging and mechanical analysis, modalities need arises to update methodology and assessment criteria for skull bone analysis to understand how bone microarchitecture and the presence of attached tissues may affect the response to mechanical load. The main aim was to analyze the effect of macroscopic and microstructural features, as well as periosteal attachment, on the mechanical properties of human skull bone. Fifty-six skull specimens from ethanol-phenoxyethanol-embalmed cadavers were prepared from two human cadavers. Assuming symmetry of the skull, all samples from one-half each were stripped of periosteum and dura mater, while the soft tissues were kept intact on the remaining samples on the contralateral side. The specimens were analyzed using microcomputed tomography to assess trabecular connectivity density, total surface area, and volume ratio. The specimens were loaded under three-point bend tests until fracture with optical co-registration. The bone fragments were then lyophilized to measure their water content. With increasingly detailed imaging and mechanical analysis modalities, there is a need to update methodology and assessment criteria for skull bone analysis to understand how the bone microarchitecture and the presence of attached tissues may affect the response to mechanical load. The mechanical properties were negatively correlated to bone thickness and water content. Conversely, most microarchitectural features did not influence either mechanical parameter. The correlation between mechanical response data and morphologic properties remains similar between the results of embalmed tissues presented here and fresh osseous tissue from literature data. The findings presented here add to the existing methodology to assess human skull for research purposes. The interaction between most microarchitectural features in ethanol-phenoxyethanol-embalmed embalmed skull samples and bending stress appear to be minute.


Asunto(s)
Cráneo/anatomía & histología , Cráneo/fisiología , Anciano de 80 o más Años , Fenómenos Biomecánicos , Cadáver , Módulo de Elasticidad/fisiología , Femenino , Resistencia Flexional/fisiología , Humanos , Masculino , Persona de Mediana Edad , Cráneo/metabolismo , Estrés Mecánico , Agua/metabolismo , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...